Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Future Oncol ; 18(10): 1185-1198, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-2065335

ABSTRACT

Cabozantinib inhibits multiple receptor tyrosine kinases, including the TAM kinase family, and may enhance response to immune checkpoint inhibitors. One cohort of the ongoing phase Ib COSMIC-021 study (NCT03170960) evaluating cabozantinib plus the PD-L1 inhibitor atezolizumab in men with metastatic castration-resistant prostate cancer (mCRPC) that has progressed in soft tissue on/after enzalutamide and/or abiraterone treatment for metastatic disease has shown promising efficacy. Here, we describe the rationale and design of a phase III trial of cabozantinib plus atezolizumab versus a second novel hormone therapy (NHT) in patients who have previously received an NHT for mCRPC, metastatic castration-sensitive PC or nonmetastatic CRPC and have measurable visceral disease and/or extrapelvic adenopathy - a population with a significant unmet need for treatment options. Trial Registration Clinical Trial Registration: NCT04446117 (ClinicalTrials.gov) Registered on 24 June 2020.


Subject(s)
Adenocarcinoma/drug therapy , Anilides/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Hormonal/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Pyridines/therapeutic use , Adenocarcinoma/pathology , Androstenes/therapeutic use , Benzamides/therapeutic use , Humans , Male , Neoplasm Metastasis , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms, Castration-Resistant/pathology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
2.
Crit Care ; 26(1): 101, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1779665

ABSTRACT

BACKGROUND: Calcium release-activated calcium (CRAC) channel inhibitors block proinflammatory cytokine release, preserve endothelial integrity and may effectively treat patients with severe COVID-19 pneumonia. METHODS: CARDEA was a phase 2, randomized, double-blind, placebo-controlled trial evaluating the addition of Auxora, a CRAC channel inhibitor, to corticosteroids and standard of care in adults with severe COVID-19 pneumonia. Eligible patients were adults with ≥ 1 symptom consistent with COVID-19 infection, a diagnosis of COVID-19 confirmed by laboratory testing using polymerase chain reaction or other assay, and pneumonia documented by chest imaging. Patients were also required to be receiving oxygen therapy using either a high flow or low flow nasal cannula at the time of enrolment and have at the time of enrollment a baseline imputed PaO2/FiO2 ratio > 75 and ≤ 300. The PaO2/FiO2 was imputed from a SpO2/FiO2 determine by pulse oximetry using a non-linear equation. Patients could not be receiving either non-invasive or invasive mechanical ventilation at the time of enrolment. The primary endpoint was time to recovery through Day 60, with secondary endpoints of all-cause mortality at Day 60 and Day 30. Due to declining rates of COVID-19 hospitalizations and utilization of standard of care medications prohibited by regulatory guidance, the trial was stopped early. RESULTS: The pre-specified efficacy set consisted of the 261 patients with a baseline imputed PaO2/FiO2≤ 200 with 130 and 131 in the Auxora and placebo groups, respectively. Time to recovery was 7 vs. 10 days (P = 0.0979) for patients who received Auxora vs. placebo, respectively. The all-cause mortality rate at Day 60 was 13.8% with Auxora vs. 20.6% with placebo (P = 0.1449); Day 30 all-cause mortality was 7.7% and 17.6%, respectively (P = 0.0165). Similar trends were noted in all randomized patients, patients on high flow nasal cannula at baseline or those with a baseline imputed PaO2/FiO2 ≤ 100. Serious adverse events (SAEs) were less frequent in patients treated with Auxora vs. placebo and occurred in 34 patients (24.1%) receiving Auxora and 49 (35.0%) receiving placebo (P = 0.0616). The most common SAEs were respiratory failure, acute respiratory distress syndrome, and pneumonia. CONCLUSIONS: Auxora was safe and well tolerated with strong signals in both time to recovery and all-cause mortality through Day 60 in patients with severe COVID-19 pneumonia. Further studies of Auxora in patients with severe COVID-19 pneumonia are warranted. Trial registration NCT04345614.


Subject(s)
Benzamides , COVID-19 Drug Treatment , Calcium Release Activated Calcium Channels , Pyrazines , Respiratory Distress Syndrome , Adult , Benzamides/therapeutic use , Calcium Release Activated Calcium Channels/antagonists & inhibitors , Humans , Pyrazines/therapeutic use , Respiration, Artificial , SARS-CoV-2 , Treatment Outcome
3.
Eur Urol ; 81(3): 285-293, 2022 03.
Article in English | MEDLINE | ID: covidwho-1568696

ABSTRACT

BACKGROUND: Men are more severely affected by COVID-19. Testosterone may influence SARS-CoV-2 infection and the immune response. OBJECTIVE: To clinically, epidemiologically, and experimentally evaluate the effect of antiandrogens on SARS-CoV-2 infection. DESIGNS, SETTINGS, AND PARTICIPANTS: A randomized phase 2 clinical trial (COVIDENZA) enrolled 42 hospitalized COVID-19 patients before safety evaluation. We also conducted a population-based retrospective study of 7894 SARS-CoV-2-positive prostate cancer patients and an experimental study using an air-liquid interface three-dimensional culture model of primary lung cells. INTERVENTION: In COVIDENZA, patients were randomized 2:1 to 5 d of enzalutamide or standard of care. OUTCOME MEASUREMENTS: The primary outcomes in COVIDENZA were the time to mechanical ventilation or discharge from hospital. The population-based study investigated risk of hospitalization, intensive care, and death from COVID-19 after androgen inhibition. RESULTS AND LIMITATIONS: Enzalutamide-treated patients required longer hospitalization (hazard ratio [HR] for discharge from hospital 0.43, 95% confidence interval [CI] 0.20-0.93) and the trial was terminated early. In the epidemiological study, no preventive effects were observed. The frail population of patients treated with androgen deprivation therapy (ADT) in combination with abiraterone acetate or enzalutamide had a higher risk of dying from COVID-19 (HR 2.51, 95% CI 1.52-4.16). In vitro data showed no effect of enzalutamide on virus replication. The epidemiological study has limitations that include residual confounders. CONCLUSIONS: The results do not support a therapeutic effect of enzalutamide or preventive effects of bicalutamide or ADT in COVID-19. Thus, these antiandrogens should not be used for hospitalized COVID-19 patients or as prevention for COVID-19. Further research on these therapeutics in this setting are not warranted. PATIENT SUMMARY: We studied whether inhibition of testosterone could diminish COVID-19 symptoms. We found no evidence of an effect in a clinical study or in epidemiological or experimental investigations. We conclude that androgen inhibition should not be used for prevention or treatment of COVID-19.


Subject(s)
Androgen Antagonists/therapeutic use , Anilides/therapeutic use , Benzamides/therapeutic use , COVID-19 Drug Treatment , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , SARS-CoV-2/isolation & purification , Tosyl Compounds/therapeutic use , Aged , Aged, 80 and over , Androgens/therapeutic use , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Sweden/epidemiology , Testosterone , Treatment Outcome
4.
J Hematol Oncol ; 14(1): 15, 2021 01 13.
Article in English | MEDLINE | ID: covidwho-1067252

ABSTRACT

Bruton's tyrosine kinase (BTK) inhibitors, drugs utilized in cancer, are being repurposed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (COVID-19). Recently, BTK inhibitors acalabrutinib and ibrutinib have been found to protect against pulmonary injury in a small group of patients infected with SARS-CoV-2. The high levels of pro-inflammatory cytokines found in the circulation of COVID-19 patients with severe lung disease suggest the involvement of the innate immune system in this process. Understanding the potential mechanism of action of BTK inhibition in SARS-CoV-2 is clearly of importance to determine how acalabrutinib, ibrutinib and possibly other BTK inhibitors may provide protection against lung injury.


Subject(s)
Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Benzamides/therapeutic use , COVID-19 Drug Treatment , Piperidines/therapeutic use , Pyrazines/therapeutic use , SARS-CoV-2 , Adenine/therapeutic use , COVID-19/metabolism , Cytokines/genetics , Cytokines/metabolism , Drug Repositioning , Gene Expression Regulation/drug effects , Humans
5.
Semin Respir Crit Care Med ; 42(2): 308-315, 2021 04.
Article in English | MEDLINE | ID: covidwho-1064166

ABSTRACT

Venous thromboembolism (VTE) is the leading preventable cause of death in hospitalized patients and data consistently show that acutely ill medical patients remain at increased risk for VTE-related morbidity and mortality in the post-hospital discharge period. Prescribing extended thromboprophylaxis for up to 45 days following an acute hospitalization in key patient subgroups that include more than one-quarter of hospitalized medically-ill patients represents a paradigm shift in the way hospital-based physicians think about VTE prevention. Advances in the field of primary thromboprophylaxis in acutely-ill medical patients using validated VTE and bleeding risk assessment models have established key patient subgroups at high risk of VTE and low risk of bleeding that may benefit from both in-hospital and extended thromboprophylaxis. The direct oral anticoagulants betrixaban and rivaroxaban are now U.S. Food and Drug Administration-approved for in-hospital and extended thromboprophylaxis in medically ill patients and provide net clinical benefit in these key subgroups. Coronavirus disease-2019 may predispose patients to VTE due to excessive inflammation, platelet activation, endothelial dysfunction, and hemostasis. The optimum preventive strategy for these patients requires further investigation. This article aims to review the latest concepts in predicting and preventing VTE and discuss the new era of extended thromboprophylaxis in hospitalized medically ill patients.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/therapy , Duration of Therapy , Hospitalization , Pulmonary Embolism/prevention & control , Venous Thromboembolism/prevention & control , Venous Thrombosis/prevention & control , Benzamides/therapeutic use , COVID-19/blood , COVID-19/complications , Critical Care , Decision Support Systems, Clinical , Humans , Medical Informatics , Patient Discharge , Pulmonary Embolism/etiology , Pyridines/therapeutic use , Risk Assessment , Rivaroxaban/therapeutic use , SARS-CoV-2 , Venous Thromboembolism/etiology , Venous Thrombosis/etiology
6.
Pulm Pharmacol Ther ; 66: 101978, 2021 02.
Article in English | MEDLINE | ID: covidwho-947382

ABSTRACT

The recent pandemic of COVID-19 caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an extraordinary challenge to identify effective drugs for prevention and treatment. The pathogenesis implicate acute respiratory disorder (ARD) which is attributed to significantly triggered "cytokine storm" and compromised immune system. This article summarizes the likely benefits of roflumilast, a Phosphodiesterase-4 (PDE-4) inhibitor as a comprehensive support COVID-19 pathogenesis. Roflumilast, a well-known anti-inflammatory and immunomodulatory drug, is protective against respiratory models of chemical and smoke induced lung damage. There is significant data which demonstrate the protective effect of PDE-4 inhibitor in respiratory viral models and is likely to be beneficial in combating COVID-19 pathogenesis. Roflumilast is effective in patients with severe COPD by reducing the rate of exacerbations with the improvement of the lung function, which might further be beneficial for better clinical outcomes in COVID-19 patients. However, further clinical trials are warranted to examine this conjecture.


Subject(s)
Aminopyridines/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Benzamides/therapeutic use , COVID-19 Drug Treatment , Phosphodiesterase 4 Inhibitors/therapeutic use , Aminopyridines/adverse effects , Aminopyridines/pharmacology , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/pharmacology , Benzamides/adverse effects , Benzamides/pharmacology , COVID-19/immunology , Cyclopropanes/adverse effects , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Cytokines/biosynthesis , Inflammation Mediators/metabolism , Pandemics , Phosphodiesterase 4 Inhibitors/adverse effects , Phosphodiesterase 4 Inhibitors/pharmacology
7.
Eur J Pharmacol ; 889: 173615, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-808499

ABSTRACT

Nowadays, coronavirus disease 2019 (COVID-19) represents the most serious inflammatory respiratory disease worldwide. Despite many proposed therapies, no effective medication has yet been approved. Neutrophils appear to be the key mediator for COVID-19-associated inflammatory immunopathologic, thromboembolic and fibrotic complications. Thus, for any therapeutic agent to be effective, it should greatly block the neutrophilic component of COVID-19. One of the effective therapeutic approaches investigated to reduce neutrophil-associated inflammatory lung diseases with few adverse effects was roflumilast. Being a highly selective phosphodiesterase-4 inhibitors (PDE4i), roflumilast acts by enhancing the level of cyclic adenosine monophosphate (cAMP), that probably potentiates its anti-inflammatory action via increasing neprilysin (NEP) activity. Because activating NEP was previously reported to mitigate several airway inflammatory ailments; this review thoroughly discusses the proposed NEP-based therapeutic properties of roflumilast, which may be of great importance in curing COVID-19. However, further clinical studies are required to confirm this strategy and to evaluate its in vivo preventive and therapeutic efficacy against COVID-19.


Subject(s)
Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Benzamides/pharmacology , Benzamides/therapeutic use , COVID-19 Drug Treatment , Neprilysin/drug effects , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Humans , Pandemics , SARS-CoV-2
8.
Med Hypotheses ; 144: 110246, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-741427

ABSTRACT

According to WHO the worst of the COVID-19 pandemic is yet to come. Despite of the exceptional measures being undertaken by regulatory agencies to expedite vaccine development, we may be several months if not years away from an effective vaccine. In such unprecedented times, the only resort nations have at their disposal is to identify and repurpose existing drugs against COVID-19 based on their known clinical or pharmacological profile which can provide direct or corroborative evidence of favorable benefit: risk in the management of COVID-19. Immune-mediated inflammation remains the hallmark of severe complications related to COVID-19 and while corticosteroids have shown preliminary evidence of benefit, they can act like a double-edged sword for majority of COVID-19 patients. Therefore, there is a need to identify 'non-steroid' potent and safe anti-inflammatory agents for use in therapeutic armamentarium against COVID-19. This article makes a case for one such existing drug, roflumilast, that can emerge as a steroid-sparing alternative against COVID-19.


Subject(s)
Aminopyridines/therapeutic use , Benzamides/therapeutic use , COVID-19 Drug Treatment , Steroids/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Cyclopropanes/therapeutic use , Cytokine Release Syndrome/virology , Cytokines/metabolism , Humans , Immune System , Immunity, Innate , Inflammation , Models, Theoretical , Phosphodiesterase 4 Inhibitors/therapeutic use , Risk , Thalidomide/analogs & derivatives , Thalidomide/therapeutic use
9.
Trials ; 21(1): 691, 2020 Jul 31.
Article in English | MEDLINE | ID: covidwho-699024

ABSTRACT

OBJECTIVES: Stage 1: To evaluate the safety and efficacy of candidate agents as add-on therapies to standard of care (SoC) in patients hospitalised with COVID-19 in a screening stage. Stage 2: To confirm the efficacy of candidate agents selected on the basis of evidence from Stage 1 in patients hospitalised with COVID-19 in an expansion stage. TRIAL DESIGN: ACCORD is a seamless, Phase 2, adaptive, randomised controlled platform study, designed to rapidly test candidate agents in the treatment of COVID-19. Designed as a master protocol with each candidate agent being included via its own sub-protocol, initially randomising equally between each candidate and a single contemporaneous SoC arm (which can adapt into 2:1). Candidate agents currently include bemcentinib, MEDI3506, acalabrutinib, zilucoplan and nebulised heparin. For each candidate a total of 60 patients will be recruited in Stage 1. If Stage 1 provides evidence of efficacy and acceptable safety the candidate will enter Stage 2 where a total of approximately 126 patients will be recruited into each study arm sub-protocol. Enrollees and outcomes will not be shared across the Stages; the endpoint, analysis and sample size for Stage 2 may be adjusted based on evidence from Stage 1. Additional arms may be added as new potential candidate agents are identified via candidate agent specific sub-protocols. PARTICIPANTS: The study will include hospitalised adult patients (≥18 years) with confirmed SARS-CoV-2 infection, the virus that causes COVID-19, that clinically meet Grades 3 (hospitalised - mild disease, no oxygen therapy), Grades 4 (hospitalised, oxygen by mask or nasal prongs) and 5 (hospitalised, non-invasive ventilation or high flow oxygen) of the WHO Working Group on the Clinical Characteristics of COVID-19 9-point category ordinal scale. Participants will be recruited from England, Northern Ireland, Wales and Scotland. INTERVENTION AND COMPARATOR: Comparator is current standard of care (SoC) for the treatment of COVID-19. Current candidate experimental arms include bemcentinib, MEDI3506, acalabrutinib, zilucoplan and nebulised heparin with others to be added over time. Bemcentinib could potentially reduce viral infection and blocks SARS-CoV-2 spike protein; MEDI3506 is a clinic-ready anti-IL-33 monoclonal antibody with the potential to treat respiratory failure caused by COVID; acalabrutinib is a BTK inhibitor which is anti-viral and anti-inflammatory; zilucoplan is a complement C5 inhibitor which may block the severe inflammatory response in COVID-19 and; nebulised heparin has been shown to bind with the spike protein. ACCORD is linked with the UK national COVID therapeutics task force to help prioritise candidate agents. MAIN OUTCOMES: Time to sustained clinical improvement of at least 2 points (from randomisation) on the WHO 9-point category ordinal scale, live discharge from the hospital, or considered fit for discharge (a score of 0, 1, or 2 on the ordinal scale), whichever comes first, by Day 29 (this will also define the "responder" for the response rate analyses). RANDOMISATION: An electronic randomization will be performed by Cenduit using Interactive Response Technology (IRT). Randomisation will be stratified by baseline severity grade. Randomisation will proceed with an equal allocation to each arm and a contemporaneous SoC arm (e.g. 1:1 if control and 1 experimental arm; 1:1:1 if two experimental candidate arms etc) but will be reviewed as the trial progresses and may be changed to 2:1 in favour of the candidate agents. BLINDING (MASKING): The trial is open label and no blinding is currently planned in the study. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): This will be in the order of 60 patients per candidate agent for Stage 1, and 126 patients for Stage 2. However, sample size re-estimation may be considered after Stage 1. It is estimated that up to 1800 patients will participate in the overall study. TRIAL STATUS: Master protocol version ACCORD-2-001 - Master Protocol (Amendment 1) 22nd April 2020, the trial has full regulatory approval and recruitment is ongoing in the bemcentinib (first patient recruited 6/5/2020), MEDI3506 (first patient recruited 19/5/2020), acalabrutinib (first patient recruited 20/5/2020) and zilucoplan (first patient recruited 19/5/2020) candidates (and SoC). The recruitment dates of each arm will vary between candidate agents as they are added or dropped from the trial, but will have recruited and reported within a year. TRIAL REGISTRATION: EudraCT 2020-001736-95 , registered 28th April 2020. FULL PROTOCOL: The full protocol (Master Protocol with each of the candidate sub-protocols) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Antiviral Agents/adverse effects , Benzamides/therapeutic use , COVID-19 , Hospitalization , Humans , Pandemics , Pyrazines/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Standard of Care , COVID-19 Drug Treatment
10.
Clin Cancer Res ; 26(14): 3514-3516, 2020 07 15.
Article in English | MEDLINE | ID: covidwho-693869

ABSTRACT

As the SARS-CoV-2 (COVID-19) pandemic spreads and the number of Bruton's tyrosine kinase inhibitor (BTKi)-treated COVID-19-affected patients grows, we must consider the pros and cons of BTKi discontinuation for our patients. In favor of BTKi continuation, BTK plays an active role in macrophage polarization. By modulating key transcription factors, BTK may regulate macrophage polarization downstream of classic M1 and M2 polarizing stimuli and mitigate the hyperinflammatory state associated with COVID-19. In favor of BTKi discontinuation, we note a potentially increased risk of secondary infections and impaired humoral immunity. We hypothesize that the potential benefit of blunting a hyperinflammatory response to SARS-CoV-2 through attenuation of M1 polarization outweighs the potential risk of impaired humoral immunity, not to mention the risk of rapid progression of B-cell malignancy following BTKi interruption. On the basis of this, we suggest continuing BTKi in patients with COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, B-Cell/drug therapy , Pneumonia, Viral/drug therapy , Protein Kinase Inhibitors/therapeutic use , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Anti-Inflammatory Agents/adverse effects , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/pathology , Humans , Inflammation/prevention & control , Macrophages/immunology , Pandemics , Piperidines/therapeutic use , Pneumonia, Viral/pathology , Protein Kinase Inhibitors/adverse effects , Pyrazines/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , SARS-CoV-2
11.
Sci Immunol ; 5(48)2020 06 05.
Article in English | MEDLINE | ID: covidwho-545978

ABSTRACT

Patients with severe COVID-19 have a hyperinflammatory immune response suggestive of macrophage activation. Bruton tyrosine kinase (BTK) regulates macrophage signaling and activation. Acalabrutinib, a selective BTK inhibitor, was administered off-label to 19 patients hospitalized with severe COVID-19 (11 on supplemental oxygen; 8 on mechanical ventilation), 18 of whom had increasing oxygen requirements at baseline. Over a 10-14 day treatment course, acalabrutinib improved oxygenation in a majority of patients, often within 1-3 days, and had no discernable toxicity. Measures of inflammation - C-reactive protein and IL-6 - normalized quickly in most patients, as did lymphopenia, in correlation with improved oxygenation. At the end of acalabrutinib treatment, 8/11 (72.7%) patients in the supplemental oxygen cohort had been discharged on room air, and 4/8 (50%) patients in the mechanical ventilation cohort had been successfully extubated, with 2/8 (25%) discharged on room air. Ex vivo analysis revealed significantly elevated BTK activity, as evidenced by autophosphorylation, and increased IL-6 production in blood monocytes from patients with severe COVID-19 compared with blood monocytes from healthy volunteers. These results suggest that targeting excessive host inflammation with a BTK inhibitor is a therapeutic strategy in severe COVID-19 and has led to a confirmatory international prospective randomized controlled clinical trial.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Benzamides/pharmacology , Benzamides/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Pyrazines/pharmacology , Pyrazines/therapeutic use , Agammaglobulinaemia Tyrosine Kinase/metabolism , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/virology , Critical Illness , Female , Follow-Up Studies , Humans , Inflammation/drug therapy , Inflammation/virology , Interleukin-6/metabolism , Male , Middle Aged , Monocytes/metabolism , Pandemics , Pneumonia, Viral/virology , Prospective Studies , Respiration, Artificial , SARS-CoV-2 , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL